

USING SIMILAR TRIANGLES

Using Cross Products to Solve Proportions

Solve for the missing variable.

1)
$$\frac{b}{8} = \frac{15}{20}$$

Using Cross Products to Solve Proportions

Solve for the missing variable.

2)
$$\frac{10}{a} = \frac{15}{18}$$

List 3 properties of similar shapes:

Same shape, different size Corresponding angles are congruent Corresponding sides are proportional

Find the missing side.

Find the measures of the interior angles algebraically. SHOW WORK!

lf	in one triangle are congruent
to	in another triangle, then
the	are

You plan to cross a river and want to know how far it is to the other side. You take measurements on your side of the river and make the drawing shown. (a) Explain why $\triangle ABC$ and $\triangle DEC$ are similar. (b) What is the distance *x* across the river?

9) If a 5 foot person casts a 6-foot shadow at the same time that a lamppost casts an 18 foot shadow, what is the height of the lamppost?

10) You can use similar triangles to find the height of a tree. Triangle ABC is similar to triangle DEC. What is the height of the tree?

